
CAV Tutorial on Satisfiability Modulo Theories July 2007

A Tutorial on Satisfiability Modulo Theoriesa

N. Shankar

(with Leonardo de Moura and Bruno Dutertre)

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/

Computer Science Laboratory

SRI International

Menlo Park, CA

1

Overview

• Satisfiability is the problem of determining if a formula

has a model.

• In the purely Boolean case, a model is a truth

assignment to the Boolean variables.

• In the first-order case, a model assigns values from a

domain to variables and interpretations over the

domain to the function and predicate symbols.

• For theories such as arithmetic, a model admits a

specific (range of) interpretation(s) to the arithmetic

symbols.

• Efficient SAT and SMT solvers have many exciting

applications.

2

Goals

This tutorial covers the pragmatic issues in the theory,

construction, and use of SMT solvers.

It is not a comprehensive survey, but a basic and rigorous

introduction to some of the key ideas.

It is not directed at experts but at potential users and

developers of SMT solvers.

We present a series of inference algorithms in a pseudocode

form that is

• Abstract enough for theoretical analysis

• But concrete enough to be easily and efficiently

implementable.

3

Historical Background

Satisfiability is one of the central concerns of logic and

computation.

It also plays a crucial role in the classification of

computational complexity, e.g., NP, #P, and PSPACE.

SMT solvers combining SAT solving and theory solving

have been developed since the late 1970s with Nelson and

Oppen’s Stanford Pascal Verifier and Shostak’s STP.

Shostak’s STP code still drives PVS.

The Stanford Pascal Verifier begat the influential

SMT-based prover Simplify.

4

SAT Solving

Propositional satisfiability has been actively studied for

many decades.

The Davis–Putnam procedure was proposed in 1960 and

optimized and implemented in the

Davis–Putnam–Logemann–Loveland (DPLL) procedure of

1963.

Modern SAT procedures can routinely handle problems of

impressive scale with hundreds of thousands of variables and

clauses.

Efficient SAT solving has a number of applications in

hardware analysis, bounded and symbolic model checking,

and constraint solving.

5

DPLL-Based SMT Solvers

The extension of DPLL-based SAT solving with theory

solving capabilities occurred only recently.

The lazy combination method where the SAT solver

updates and queries a theory solvers, was introduced in

Verifun, CVC, MathSAT, and ICS.

The eager combination method where a theory solver is

used to enumerate lemmas in Boolean form, is best

represented by UCLID.

This tutorial focuses on the lazy approach, but the eager

approach is also being actively researched.

The basic ideas of SMT solving are fairly simple, but a lot

of experimentation and fine-tuning is needed to build an

efficient implementation.

6

Applications and Extensions

SAT and SMT have a large and growing list of applications:

Test generation, bounded and symbolic model checking,

k-induction and invariance checking, extended static

checking, invariant generation, image computation,

symbolic model checking, predicate abstraction, scheduling,

planning, . . .

Extensions to SAT/SMT include proofs, normal forms,

unsatisfiable cores, interpolants, MaxSAT/MaxSMT.

7

Outline

• Logic background (30 min)

• SAT solving (30 min)

• SMT solving (30 min)

• Coffee Break (30 min)

• Theory Constraint Solvers (45 min)

• Theory Combinations (25 min)

• Applications (20 min)

8

Logic Basics

Logic studies the trinity between language, interpretation,

and proof.

Language circumscribes the syntax that is used to

construct sensible assertions.

Interpretation ascribes an intended sense to these assertions

by fixing the meaning of certain symbols, e.g., the logical

connectives, and delimiting the variation in the meanings of

other symbols, e.g., variables, functions, and predicates.

An assertion is valid if it holds in all interpretations.

Checking validity through interpretations is typically

impossible, so proofs in the form axioms and inference rules

are used to demonstrate the validity of assertions.

9

Language

Signature Σ[X] contains functions and predicate symbols

with associated arities, and X is a set of variables.

The signature can be used to construct

• Terms τ := x | f(τ1, . . . , τn)

• Atoms α := p(τ1, . . . τn),

• Literals λ := α | ¬α

• Constraints λ1 ∧ . . . ∧ λn,

• Clauses λ1 ∨ . . . ∨ λn,

• Formulas ψ := p(τ1, . . . , τn) | τ0 = τ1 | ¬ψ0 |
ψ0 ∨ ψ1 | ψ0 ∧ ψ1 | (∃x : ψ0) | (∀x : ψ0)

10

Structure

A Σ-structure M consists of

• A domain |M |

• A map M(f) from |M |n → M for each n-ary function f ∈ Σ

• A map M(p) from |M |n → {>,⊥} for each n-ary predicate p.

Σ[X]-structure M also maps variables in X to domain

elements in |M |.

E.g., If Σ = {0,+, <}, then M such that |M | = {a, b, c} and

M(0) = a, M(+) =
{〈a, a, a〉, 〈a, b, b〉, 〈a, c, c〉, 〈b, a, b〉, 〈c, a, c〉, 〈b, b, c〉, 〈b, c, a〉, 〈c, b, a〉, 〈c, c, c〉},
and M(<) = {〈a, b〉, 〈b, c〉} is a Σ-structure

11

Interpreting Terms

M [[x]] = M(x)

M [[f(s1, . . . , sn)]] = M(f)(M [[s1]], . . . ,M [[sn]])

Example: From previous example, if M(x) = a, M(y) = b,

and M(z) = c, then M [[+(+(x, y), z)]] =
M(+)(M(+)(M(x),M(y)),M(z)) = M(+)(b, c) = a.

12

Interpreting Formulas

The interpretation of a formula A in M , M [[A]], is defined as

M |= s = t ⇐⇒ M [[s]] = M [[t]]

M |= p(s1, . . . , sn) ⇐⇒ M(p)(〈M [[s1]], . . . ,M [[sn]]〉) = >

M |= ¬ψ ⇐⇒ M 6|= ψ

M |= ψ0 ∨ ψ1 ⇐⇒ M |= ψ0 or M |= ψ1

M |= ψ0 ∧ ψ1 ⇐⇒ M |= ψ0 and M |= ψ1

M |= (∀x : ψ) ⇐⇒ M{x 7→ a} |= ψ, for all a ∈ |M |

M |= (∃x : ψ) ⇐⇒ M{x 7→ a} |= ψ, for some a ∈ |M |

13

Interpretation Example

M |= (∀y : (∃z : +(y, z) = x)).

M 6|= (∀x : (∃y : x < y)).

M |= (∀x : (∃y : +(x, y) = x)).

14

Validity

A Σ[X]-formula A is satisfiable if there is a

Σ[X]-interpretation M such that M |= A.

Otherwise, the formula A is unsatisfiable.

If a formula A is satisfiable, so is its existential closure

∃x : A, where x is vars(A), the set of free variables in A.

If a formula A is unsatisfiable, then the negation of its

existential closure ¬∃x : A is valid, e.g., ¬(∀x : (∃y : x < y)).

If A ∧ ¬B is unsatisfiable, A⇒ B is valid.

15

Propositional Logic

Formulas: φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2.

P is a class of propositional variables (0-ary predicates):

p0, p1,

A model M assigns truth values {>,⊥} to propositional

variables: M(p) = > ⇐⇒ M |= p.

M [[φ]] is the meaning of φ in M and is computed using truth

tables:

φ A B ¬A A ∨B A ∧B

M1(φ) ⊥ ⊥ > ⊥ ⊥

M2(φ) ⊥ > > > ⊥

M3(φ) > ⊥ ⊥ > ⊥

M4(φ) > > ⊥ > >

16

Satisfiability in a Theory

A theory can be defined in terms of its axioms or as a class

of models T closed under isomorphism and variable

reassignment.

A formula A is satisfiable in a theory T (T |∼ A) if for some

M ∈ T , M |= A.

Example: The theory of a transitive relation < is set of

Σ-structures M where Σ = {<}, and for all a, b, c ∈ |M |, if

M(<)(a, b) = M(<)(b, c) = >, then M(<)(a, c) = >.

A first-order theory is the set of models of some set of

first-order sentences (the axioms) — hence we do not

distinguish between the semantic and axiomatic notions of

a theory.

17

Satisfiability Problems

Satisfiability problems can be classified as follows:

1. Word Problem (WP): T
?

|∼ ¬p

2. Uniform WP (UWP): T
?

|∼ ¬p ∧ p1 ∧ . . . ∧ pn

3. Clausal Validity (CVP): T
?

|∼ Γ, for Γ ≡ l1 ∧ . . . ∧ ln

4. CNF Satisfiability (CNFSP): T
?

|∼ ∆1 ∧ . . . ∧∆n

5. Ground Satisfaction (GSP): T
?

|∼ A for quantifier-free

formula A

6. Satisfiability (SP): T
?

|∼ A, for any formula A.

18

Satisfiability Example

Consider the theory of a transitive relation <.

The UWP query ¬x < w, x < y, x < z, y < w can be shown to

be unsatisfiable by computing the transitive closure of the

antecedents to get x < y, x < z, y < w, x < w.

The UWP query ¬y < z, x < y, x < z, y < w can be shown to

be satisfiable in the term model given by the transitive

closure x < y, x < z, y < w, x < w, y 6< x, z 6< x, y 6< z, z 6< y, z 6<
w,w 6< z,w 6< x,w 6< y.

In the above case, the clausal validity problem is reducible

to the UWP: ¬p1, . . . ,¬pm, q1, . . . , qn is unsatisfiable iff

¬pi, q1, . . . , qn is unsatisfiable for some i, 1 ≤ i ≤ m.

19

Inference Systems

20

Inference Structures

A Σ[X]-inference structure I is a triple 〈Φ,`,Λ〉 of

1. Logical states ϕ

2. Reduction relation ` between logical states

3. Logical content operation Λ, where Λ(ϕ) is a

Σ[X]-formula, for each ϕ ∈ Φ.

vars(ϕ) is the set of free variables in Λ(ϕ).

21

Inference Structures (contd.)

A logical state ϕ consists of zero or more configurations

κ1| . . . | κn, where | is associative, commutative, and

Λ(κ1| . . . | κn) = Λ(κ1) ∨ . . . ∨ Λ(κn).

A state ϕ is satisfiable if Λ(ϕ) is satisfiable.

⊥ is an unsatisfiable configuration, so that ϕ | ⊥ = ϕ.

The reduction relation must be monotonic: If ϕ ` ϕ′ and

vars(ϕ′) ∩ vars(φ) ⊆ vars(ϕ), then φ|ϕ ` φ|ϕ′.

22

Inference Systems

An inference system I for a Σ-theory T is a Σ[X]-inference

structure that is

1. Conservative: Whenever ϕ `I ϕ′, Λ(ϕ) and Λ(ϕ′) are

T -equisatisfiable.

2. Progressive: The reduction relation `I should be

well-founded.

3. Canonizing: A state is irreducible only if it is either ⊥
or is T -satisfiable.

For any class of Σ[X]-formulas Ψ, if there is a mapping ν

from Ψ to Φ such that Λ(ν(A)) = A, then a T -inference

system is a sound and complete decision procedure for

T -satisfiability (relative to an oracle for `) for Ψ.

23

Inference System for Equivalence

Delete
x = y, G; F ; D

G; F ; D
if F (x) ≡ F (y)

Merge
x = y, G; F ; D

G; F ′ ◦ F ; F ′(D)

if F (x) 6≡ F (y)

F ′ = {orient(F (x) = F (y))}

Diseq
x 6= y, G; F ; D

G; F ; x′ 6= y′, D
x′ = F (x), y′ = F (y′)

Contrad
G; F ; x 6= y, D

⊥
if F (x) = F (y)

Partition F is an idempotent variable equality set

{x1 = y1, . . . , xn = yn}, where xi � yi. Note that F (y) = y for

y 6∈ dom(F).

M [[a = b]] := (M [[a]] = M [[b]]).

The above inference system is (strongly) conservative,

progressive, and canonizing.

24

Satisfiability using DPLL

25

Normal Forms

Conversion to normal form is done by an inference system

without canonicity.

The conversion steps should converge while preserving

satisfiability.

Example normal forms include negation normal form

(NNF), conjunctive normal form (CNF), disjunction normal

form (DNF), and Skolem normal form.

Such transformations need not actually detect

unsatisfiability.

26

Negation

The inference relation ` will be represented by a function f

such that the relation κ ` f(κ) is an inference relation.

The decision procedure is then given by f∗(κ0) for the initial

state κ0, or by a tail-recursive function f on the state.

p = ¬p

¬φ = φ

φ0 ∨ φ1 = φ0 ∧ φ1

φ0 ∧ φ1 = φ0 ∨ φ1

Theorem: A ⇐⇒ ¬A.

27

Negation Normal Form

NNF (p) = p

NNF (¬p) = ¬p

NNF (¬¬φ) = NNF (φ)

NNF (φ0 ∨ φ1) = NNF (φ0) ∨NNF (φ1)

NNF (¬(φ0 ∨ φ1)) = NNF (¬φ0) ∧NNF (¬φ1)

NNF (φ0 ∧ φ1) = NNF (φ0) ∧NNF (φ1)

NNF (¬(φ0 ∧ φ1)) = NNF (¬φ0) ∨NNF (¬φ1)

E.g., ¬(p ∧ (q ∨ ¬r)) becomes ¬p ∨ (¬q ∧ r).

Theorem: NNF (A) ⇐⇒ A.

28

Conversion to Clausal (CNF) Form

In clausal form, the formula is a set (conjunction) of clauses∧
K, and each clause Γ in K is a disjunction of literals.

CNF (p,∆) = 〈p,∆〉

CNF (¬p,∆) = 〈¬p,∆〉

CNF (φ1 ∧ . . . ∧ φn,∆) = 〈l,∆′〉, where ∆0 = ∆

〈li+1,∆i〉 = CNF (φi+1,∆i), for 0 ≤ i < n

l ≡ p,∆′ = ∆n, if p = l1 ∧ . . . ∧ ln ∈ ∆n,

or l ≡ ¬p,∆′ = ∆n, if p = l1 ∨ . . . ∨ ln
or l ≡ p,∆′ = ∆n ∪ {p = l1 ∧ . . . ∧ ln}

for p fresh , otherwise

CNF (φ1 ∨ . . . ∨ φn,∆) = . . .

29

Resolution

Input K is a set of clauses.

Atoms are ordered by � which is lifted to literals so that

¬p � p � ¬q � q, if p � q.

Literals appear in clauses in decreasing order without

duplication.

Tautologies, clauses containing both l and l, are deleted

from initial input.

Res
K, l ∨ Γ1, l ∨ Γ2

K, l ∨ Γ1, l ∨ Γ2,Γ1 ∨ Γ2

Γ1 ∨ Γ2 6∈ K
Γ1 ∨ Γ2 is not tautological

Contrad
K

⊥
if p,¬p ∈ K for some p

30

Ordered Resolution: Example

(K0 =) ¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r
(K1 =) ¬q ∨ r, K0

Res

(K2 =) q ∨ r, K1

Res

(K3 =) r, K2

Res

⊥
Contrad

31

Correctness

Progress: Bounded number of clauses in the given literals.

Each application of Res generates a new clause.

Conservation: For any model M , if M |= l ∨ Γ1 and

M |= l ∨ Γ2, then M |= Γ1 ∨ Γ2.

Canonicity: Given an irreducible non-⊥ configuration K in
the atoms p1, . . . , pn with pi ≺ pi+1 for 1 ≤ i ≤ n, build a
series of partial interpretations Mi as follows:

1. Let M0 = ∅

2. If pi+1 is the maximal literal in a clause pi+1 ∨ Γ ∈ K and Mi 6|= Γ,

then let Mi+1 = Mi{pi+1 7→ >}.
Otherwise, let Mi+1 = Mi{pi+1 7→ ⊥}.

Each Mi satisfies all the clauses in K in the atoms p1, . . . , pi.

32

Non-Branching Inference Systems

In non-branching systems, the logical state κ1 | . . . | κn

consists of exactly one configuration.

E.g., Resolution, equality.

Non-branching systems can still be nondeterministic in the

application of inference rules.

Most of the inference systems we present are

non-branching.

33

Semantic Inference Systems

Each configuration κ in a semantic inference system is

associated with a partial interpretation Mκ which serves as a

candidate model.

When Mκ |= ¬Λ(κ) is detected, there is a conflict.

Canonicity can be easily established since the model is part

of the state.

Mκ can be used to quickly prune search space by eliminating

choices that conflict with the model.

Semantic inference systems operate by incrementally

building the candidate model through conflict location,

correction, and elaboration.

34

CNF Satisfiability with DPLL

DPLL is a semantic inference system.

Let K represent the input clause set and atoms(K) represent

the propositional variables in K.

The state consists of a quadruple 〈h,M,K,C〉, where

1. h ≥ 0 is the branching level of the search

2. M is a sequence M0; . . . ;Mh, where each Mi is a partial

map from atoms(K) to {>,⊥} so that

dom(Mi) ∩ dom(Mj) = ∅ for i 6= j.

3. C is the set of conflict clauses derived from K.

M can be viewed as a partial assignment so that

M(l) = Mi[[l]] if l ∈ dom(Mi) or l ∈ dom(Mi) for some i, and ⊥,

otherwise. Then dom(M) = {l|l ∈Mi or l ∈Mi}.

35

DPLL Informally

If M is a total assignment such that M |= Γ for each Γ ∈ K,

then M |= K.

If M is a partial assignment at level h, then propagation

extends M at level h with the implied literals l such that

l ∨ Γ ∈ K ∪ C and M |= ¬Γ.

If M detects a conflict, i.e., a clause Γ ∈ K ∪ C such that

M |= ¬Γ, then the conflict is analyzed to construct a

conflict clause that allows the search to be continued from

a prior level.

If M cannot be extended at level h and no conflict is

detected, then an unassigned literal l is selected and

assigned at level h+ 1 where the search is continued.

36

DPLL

Initially, the level is 0, the model M is the empty sequence,

and the conflict clause set is empty.

dpll(K) := dpllr(0, ∅,K, ∅) (init)

dpllr(0,M,K,C) := ⊥, if (contrad)

propagate(M,K,C) = ⊥[Γ]

A conflict is when for some Γ ∈ K ∪ C, M |= ¬Γ.

A conflict at level 0 signals unsatisfiability since all the

literals in M are implied by K.

37

DPLL

If there is a conflict Γ at level h+ 1, analyze(h+ 1,M,Γ) is

used to construct a conflict clause Γ′ which contains exactly

one literal at level h+ 1. Note that M |= ¬Γ′.

L2(Γ′) is the highest level of any literal in Γ below h+ 1.

dpllr(h+ 1,M,K,C) := dpllr(h′,Mh′ ◦ 〈l[Γ′]〉,K,C ′),

where (backjump)

propagate(M,K,C) = ⊥[Γ],

analyze(h+ 1,M,Γ) = l[Γ′],

C ′ = C ∪ {Γ′},
h′ = L2 (Γ′)

38

DPLL

If propagate(M,K,C) does not detect a conflict, then it

returns an assignment M ′ extending M at level h.

The search proceeds at level h+ 1 by selecting and assigning

an unassigned literal l.

dpllr(h,M,K,C) := dpllr(h+ 1,M ′′,K,C), where (split)

M ′ = propagate(M,K,C) 6= ⊥,
l = select(M ′,K) 6= ⊥,
M ′′ = M ′; l

39

DPLL

If propagate(M,K,C) does not detect a conflict and returns

an assignment M ′, then if there are no more unassigned

literals, select(M ′,K) returns ⊥.

The search then returns M ′ as a satisfying assignment to

the input clauses K

dpllr(h,M,K,C) := M ′, where (sat)

M ′ = propagate(M,K,C) 6= ⊥,
select(M ′,K) = ⊥

40

Propagation

propagate(M,K,C) := propagate(〈M, l[Γ]〉,K,C), where (unit)

Γ ∈ K ∪ C,
Γ ≡ l ∨ l1 ∨ . . . ∨ ln,
l 6∈ dom(M)

M |= ¬li ∧ . . . ∧ ¬ln
propagate(M,K,C) := ⊥[Γ], where (conflict)

if Γ ∈ K ∪ C : M |= ¬Γ

propagate(M,K,C) := M, where (terminate)

for each Γ ∈ K ∪ C,
M |= Γ or

Γ ≡ l ∨ l′ ∨ Γ′, for l 6≡ l′

with l, l′ 6∈ dom(M)

41

Analysis

Given a conflict Γ such that M |= Γ, resolve on the literals

falsified in Mh until there is exactly such literal.

analyze(h,M,Γ) := l[Γ],

if there is a unique l ∈ Γ : Mh |= l

analyze(h,M,Γ) := analyze(h,M,Γ′ ∨ Γ′′), otherwise

where Γ ≡ l ∨ Γ′,

l[l ∨ Γ′′] ∈Mh

Note that the resolution step with l ∨ Γ′ and l ∨ Γ′′ is feasible

since M |= Γ′ ∨ Γ′′.

42

DPLL Example

Let K be

{p ∨ q,¬p ∨ q, p ∨ ¬q, s ∨ ¬p ∨ q,¬s ∨ p ∨ ¬q,¬p ∨ r,¬q ∨ ¬r}.

step h M K C Γ

select s 1 ; s K ∅

select r 2 ; s; r K ∅

propagate 2 ; s; r,¬q[¬q ∨ ¬r] K ∅

propagate 2 ; s; r,¬q, p[p ∨ q] K ∅

conflict 2 ; s; r,¬q, p K ∅ ¬p ∨ q

43

DPLL Example (contd.)

step h M K C Γ

conflict 2 ; s; r,¬q, p K ∅ ¬p ∨ q

analyze 0 ∅ K q

propagate 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r[¬p ∨ r] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

44

DPLL Correctness

Progress: Each backjump step adds a new assignment at

the level h′ so that
∑h

i=0 |Mi| ∗ (N + 1)(N−h) increases toward

the bound (N + 1)(N+1) for N = |vars(K)|. In the example,

N = 4, the backjump step goes from a value 1300 in base 4
to the value 10000 which is closer to the bound 40000.

Conservation: In each transition from 〈M,K,C〉 to

〈M ′,K ′, C ′〉 (or ⊥), the clause sets M0 ∪K ∪ C and

M0 ∪K ′ ∪ C ′ are equisatisfiable.

Canonicity: In an irreducible non-⊥ state, M is total

assignment and there is no conflict so for each clause Γ in

K ∪ C, M |= Γ.

45

DPLL with Proof

Resolution proofs can be easily extracted from the analysis

phase of the DPLL search procedure.

Each conflict clause in C has an associated proof.

The proof of the final conflict can be derived by resolution

from the clauses in K ∪ C.

Most solvers do not maintain proofs due to the time/space

overhead.

A cheaper alternative is to maintain explanations in the

form of the input clauses used to prove each conflict clause.

46

Satisfiability Modulo Theories (SMT)

47

Satisfiability Modulo Theories (SMT)

In SMT solving, the Boolean atoms represent constraints

over individual variables ranging over integers, reals,

datatypes, and arrays.

The constraints can involve theory operations, equality, and

inequality.

Now, the SAT solver has to interact with a theory

constraint solver.

The constraint solver can detect conflicts involving theory

reasoning, e.g., f(x) 6= f(y), x = y, or

x− y ≤ 2, y − z ≤ −1, z − x ≤ −3.

The constraint solver must produce efficient explanations of

unsatisfiability, and support inexpensive queries, incremental

assertions, and efficient backtracking.

48

Example Constraint Solvers

Core theory: Equalities between variables x = y, offset

equalities x = y + c.

Term equality: Congruence closure for uninterpreted

function symbols

Difference constraints: Incremental negative cycle

detection for inequality constraints of the form x− y ≤ k.

Linear arithmetic constraints: Fourier’s method, Simplex.

49

Theory Constraint Solver Interface

The satisfiability procedure uses a theory constraint solver

oracle which maintains the theory state S with the interface

operations:

1. assert(l, S) adds literal l to the theory state S returning

a new state S′ or ⊥[∆]

2. check(S) checks if the conjunction of literals asserted to

S is satisfiable, and returns either > or ⊥[∆].

3. retract(S, l): Retracts, in reverse chronological order, the

assertions up to and including l from state S.

4. ask(l, S) is an incomplete test the satisfiability of l, S

returning either ⊥[∆] or >. A complete test can be

implemented as retract(check(assert(l, S)), l).

50

Generic SMT

The tdpll procedure operates on a state consisting of

1. Level h

2. Partial assignment M

3. Theory solver state S

4. Input clause set K and the conflict clause set C.

Initially, the level is 0 and M , S, and C are empty.

tdpll(K) := tdpllr(0, ∅, ∅,K, ∅) (tinit)

51

Generic SMT

In each decision level, the ask(l, S) operation is used to scan

the unassigned literals l in K to check if l is entailed by S.

Following scanning, propagation is used as in dpll .

At level 0, if the scan-and-propagate operation scanprop
returns a conflict with conflict clause Γ, then the input

clause set is unsatisfiable.

tdpllr(0,M, S,K,C) := ⊥, where (tcontrad)

scanprop(M,S,K,C) = ⊥[Γ]

52

Theory Backjump

backjump(h,M, S,K,C,Γ) = 〈h′,Mh′ ◦ l[Γ′], S′, C ′〉, where

l[Γ′] = tanalyze(h,M,Γ)

h′ = L2 (Γ′)

C ′ = C ∪ {Γ′}

S′ = retract(S, lh′+1)

lh′+1 is the decision literal at h′ + 1.

53

Generic SMT

Backjumping is as in dpll except that S is also backed up to

the checkpointed state Sh′ .

tanalyze is also identical to analyze from dpll .

tdpllr(h+ 1,M, S,K,C) := tdpllr(h′,M ′, S′,K,C ′), (tbackjump)

where

〈h′,M ′, S′, C ′〉 =

backjump(h+ 1,M, S,K,C,Γ)

scanprop(M,S,K,C) = ⊥[Γ]

54

Generic SMT

The split operation uses tselect to select an unassigned

literal and adds it to the the theory state.

The tselect operation is the same as select.
tdpllr(h,M, S,K,C)

:= tdpllr(h+ 1,M ′′, S′′,K,C), where (tsplit)

〈M ′, S′, C ′〉 = scanprop(M,S,K,C) 6= ⊥,
l = tselect(M ′,K) 6= ⊥,
S′′ = assert(l, S′) 6= ⊥
M ′′ = M ′; l[]

55

Unsatisfiable assert

tdpllr(h,M, S,K,C)

:= tdpllr(h′,M ′, S′,K,C ′), where (tsplit)

backjump(h+ 1,M ′, S′,K,C,Γ)

〈M ′, S′, C ′〉 = scanprop(M,S,K,C) 6= ⊥,
l = tselect(M ′,K) 6= ⊥,
assert(l, S′) = ⊥[Γ]

56

Generic SMT

If the assignment M is total, then either check(S′) returns ⊥
and we have satisfiability, or backjumping is executed.

tdpllr(h,M, S,K,C) (tcheck)

:=


M ′, if check(S′) = >
⊥, if h = 0, check(S′) = ⊥[Γ]

backjump(h,M ′, S′,K,C,Γ),

if h > 0, check(S′) = ⊥[Γ]

with

〈M ′, S′〉 = scanprop(M,S,K,C) 6= ⊥,
tselect(M ′,K) = ⊥

57

Propagation

The scan-and-propagate phase first executes ask(l, S) for

each unassigned literal l and then performs Boolean

propagation.

If ask(l, S) = ⊥[Γ], then l is appended to M , and Γ is
appended to C.

scanprop(M, S, K, C) := tpropagate(M ′, S, K, C), where

M ′ = scanlits(M, S, K, C)

scanlits(M, S, K, C) := M ′, where

M ′ = M ◦ 〈l[Γ] | l ∈ lits(K)− dom(M), ask(l, S) = ⊥[Γ]〉

58

Propagation

Propagation is similar to dpll . Each propagated literal is

also asserted to S.

tpropagate(M,S,K,C)

:=

 ⊥[Γ], if S′ = ⊥[Γ]

tpropagate(〈M, l[Γ]〉, S′,K,C), otherwise
(tunit)

where

Γ ∈ K ∪ C,
Γ ≡ l ∨ l1 ∨ . . . ∨ ln,
l 6∈ dom(M),

M |= l1 ∧ . . . ∧ ln
S′ = assert(l, S)

59

Propagation

tpropagate(M,S,K,C) := ⊥[Γ], where (tconflict)

if Γ ∈ K ∪ C : M |= Γ

tpropagate(M,S,K,C) := 〈M,S〉, where (tterminate)

for each Γ ∈ K ∪ C,
M |= Γ or

Γ ≡ l ∨ l′ ∨ Γ′,

and l, l′ 6∈ dom(M)

60

TDPLL example

Input is y = z, x = y ∨ x = z, x 6= y ∨ x 6= z

Step M F D C

Propagate y = z {y 7→ z} ∅ ∅

Select y = z; x 6= y {y 7→ z} {x 6= y} ∅

Scan
. . . , x 6= z

[x 6= z ∨ y 6= z ∨ x = y]
{y 7→ z} {x 6= y} ∅

Propagate . . . {y 7→ z} {x 6= y}

Analyze . . . {y 7→ z} {x 6= y} {y 6= z ∨ x = y}

Backjump y = z, x = y {y 7→ z} {x 6= y} {y 6= z ∨ x = y}

Assert y = z, x = y {x 7→ y, y 7→ z} {x 6= y} {y 6= z ∨ x = y}

Scan
. . . , x = z

[x = z ∨ x 6= y ∨ y 6= z]
{x 7→ y, y 7→ z} {x 6= y} {y 6= z ∨ x = y}

Conflict

61

Theory Constraint Solvers

62

Theory Constraint Solvers

Theory constraint solvers solve the clausal validity problem

in a given theory by checking the satisfiability of l1 ∧ . . . ∧ ln.

We first present solvers for individual theories as inference

systems.

These solvers implement the assert, ask , check , retract
interfaces.

We then present the combination of individual solvers into a

solver for the union of theories.

63

Variable Equality: Union

The variable equality inference system is similar to the one

presented earlier.

The state consists of a find structure F , the E-graph, that

maintains equivalence classes and the input disequalities D.

With respect to F , we write x ∼ y if F ∗(x) = F ∗(y).

Initially, F (x) = x for each variable x.

The equality x = y is processed by merging distinct

equivalence classes using the union operation below.

union(F)(x, y) =

 F [x′ := y′], y′ ≺ x′

F [y′ := x′], otherwise

where x′ ≡ F ∗(x) 6≡ F ∗(y) ≡ y′

64

Merging Input Equalities

addeqlit(x = y, F,D) (skip)

:= 〈F,D〉, if

F ∗(x) ≡ F ∗(y)

addeqlit(x = y, F,D) (union)

:=


⊥, if

F ′∗(u) ≡ F ′∗(v) for some u 6= v ∈ D
〈F ′, D〉,otherwise

where

x′ = F ∗(x) 6≡ F ∗(y) = y′,

F ′ = union(F)(x, y)

65

Adding Disequalities

addeqlit(x 6= y, F,D) := ⊥, if F ∗(x) ≡ F ∗(y) (contrad)

addeqlit(x 6= y, F,D) := 〈F,D〉, if (skipdiseq)

F ∗(x) ≡ F ∗(x′),

F ∗(y) ≡ F ∗(y′),

for x′ 6= y′ ∈ D
addeqlit(x 6= y, F,D) := 〈F, {x 6= y} ∪D〉, otherwise. (adddiseq)

66

Correctness

Progress: The find trees are rooted so that for any x,

F (F i(x)) = F i(x) for some i.

This means the F ∗(x) operation is always well defined and

terminating.

Conservation: In addeqlit(l, F,D) = 〈F ′, D′〉, the two sides

are equisatisfiable, as is also the case when

addeqlit(l, F,D) = ⊥.

Canonicity: When addeqlit(l, F,D) = 〈F ′, D′〉, the state

〈F ′, D′〉 can be used to construct a term model M with

|M | = {x | F ′(x) = x} and M(x) = F ′∗(x).

67

The API

What are ask , assert, check , and retract?

The state S is 〈F,D〉.

assert(l, S) is just addeqlit(l, F,D).

Since addeqlit is complete, check is just the identity.

ask(l, S) is defined so that

ask(x = y, 〈F,D〉) =


⊥, if F ∗(x) = F ∗(x′), F ∗(y) = F ∗(y′),

for some x′ 6= y′ ∈ D
>, otherwise

ask(x 6= y, 〈F,D〉) =

 ⊥, if F ∗(x) = F ∗(y)

>, otherwise

68

Retracting Assertions

Checkpointing the find data structure can be expensive.

Shostak’s method for checkpointing uses association stacks

so that checkpointing can be done at zero cost by

maintaining stack pointers.

However, this makes the find operation expensive. This can

be ameliorated with a difference alist, but then backtracking

becomes expensive.

A disequality can be retracted by just deleting it from D.

Retracting equality assertions is more difficult — the history

of the merge operations have to be maintained and

demerged.

The Simplify prover employs a space-efficient solution by

maintaining the equivalence classes in a circular list.

69

Congruence Closure

The free theory Φ(Σ) over a signature Σ is the first-order

theory with an empty set of non-logical axioms.

Σ-terms have their function symbols from the signature Σ.

Equivalence is extended to congruence with the rule that

for each n-ary function f , f(s1, . . . , sn) = f(t1, . . . , tn) if si = ti

for each 1 ≤ i ≤ n.

For each term f(s1, . . . , sn), the E-graph now contains nodes

v where label(v) is either a variable name or an n-ary

function f with children(v) = v1, . . . , vn.

The graph is congruence-closed if whenever

label(v) = label(v′) and vi ∼ v′i for 1 ≤ i ≤ n for

children(v) = v1, . . . , vn and children(v′) = v′1, . . . , v
′
n, then v ∼ v′.

70

Adding Equality

As with equivalence, the find roots s′ = F ∗(s) and t′ = F ∗(t)
are merged.

Any congruent pairs from the parent sets π(s′) and π(t′)
must also be merged.

Any pair of terms ŝ in π(s′) and t̂ in π(t′) that are congruent

in F are added to the queue of equalities to be merged.

addeqlit(s = t, F,D, π) := close(F,D, {s = t}, π)

71

Closing the E-Graph

close(F,D,Q, π) (congruence)

:= close(F ′, D,Q′, π′),

when s, t : s = t ∈ Q, s′ = F ∗(s) 6≡ F ∗(t) = t′,

s′ ≺ t′, F ′ = F [t′ := s′],

π′ = π[s′ := π(s′) ∪ π(t′)]

Q′ = Q ∪

ŝ′ = t̂′ |
ŝ ∈ π(s), t̂ ∈ π(t),

ŝ′ = F ′∗(ŝ) 6≡ F ′∗(t̂) = t̂′

congruent(F ′, s′, t′)


close(F,D,Q, π) (terminate)

:= 〈F,D, π〉, otherwise.

72

Congruence Closure Example

x = g(x), f(x, g(g(x))) 6= g(x), f(x, x) = g(g(x))

Term universe U = {x, g(x), f(x, x), g(g(x)), f(x, g(g(x)))}.

Step F D

Add {x 7→ g(x)} ∅

Close {. . . , g(x) 7→ g(g(x)), f(x, x) 7→ f(x, g(g(x)))} ∅

Add {. . .} f(x, g(g(x))) 6= g(x)

Add {. . . , f(x, x) 7→ g(g(x))} f(x, g(g(x))) 6= g(x)

Conflict

73

Congruence Closure Correctness

Progress: If there are n distinct equivalence classes, then

for each invocation of close, at most (n− 1) ∗ (n− 2) pairs of

distinct equivalence classes can be added to Q.

Conservation: In each step of close, if 〈F,D,Q〉 ` ⊥, then

〈F,D,Q〉 is unsatisfiable. If 〈F,D,Q〉 ` 〈F ′, D′, Q′〉, then

equisatisfiability is easily checked.

Canonicity: The state 〈F,D〉 yields a term model M where

|M | = {s | F (s) = s}, where M(x) = F ∗(x) and

M(f)(a1, . . . , an) = F ∗(f(b1, . . . , bn)) if there is a term

f(b1, . . . , bn) ∈ |M | such that F ∗(ai) ≡ F ∗(bi). Otherwise,

M(f)(a1, . . . , an) = f(a1, . . . , an).

74

Difference Arithmetic

Difference arithmetic constraints contain literals of the form

x− y ≤ c for integer constant c.

Strict inequalities x− y < c can be encoded as x− y ≤ c− 1.

Such constraints are common in program verification and

scheduling applications.

DA constraints can be represented as a weighted directed

graph with variables for vertices and an edge from y to x

labeled c corresponding to x− y ≤ c.

An unsatisfiable constraint corresponds to the existence of a

path x1〈c1〉x2 . . . xn〈cn〉x1 such that c1 + c2 . . .+ cn < 0 since

this would imply x1 < x1.

75

Difference Arithmetic

The semantic inference system for difference arithmetic

below maintains a graph structure E such that

E(y) = {〈x1, c1〉, . . . , 〈xn, cn〉} for the constraints xi − y ≤ ci

and an assignment ρ of integers to variables.

An inequality x− y ≤ c is asserted by adding a new edge to

the graph, and modifying ρ as needed so that ρ(x)− ρ(y) ≤ c.

The new assignment might not be consistent with the

edges out of x.

addineq(x, y, c, ρ, E) := 〈ρ,E[y := E(y) ∪ {〈x, c〉}]〉, if

ρ(y)− ρ(y) ≤ c

76

Difference Arithmetic

The vertex x is added to the relaxation queue.

If the original vertex y appears in the relaxation queue, then

we have detected a negative cycle.

addineq(x, y, c, ρ, E) :=

 ⊥, if ρ′ = ⊥
〈ρ′, E′〉, otherwise

where

E′ = E[y := E(y) ∪ {〈x, c〉}],

ρ′ =


ρ, if ρ(x)− ρ(y) > c

relaxv(y, ρ[x := ρ(y) + c], E′, {x}),
otherwise

77

Relaxing

For a selected vertex x in Q, collect all the 〈z, c〉 ∈ E(x) such

that ρ(z)− ρ(x) > c.

Set the assignment of ρ(z) to ρ(x) + c, and add z to the

queue Q.

relaxv(y, ρ, E, ∅) := ρ

relaxv(y, ρ, E,Q) := ⊥, if y ∈ Q

relaxv(y, ρ, E,Q) := relaxv(y, ρ′, E,Q′), where

〈ρ′, Q′〉 = relax (x, ρ,Q), for x ∈ Q

relax (x, ρ,Q) := 〈ρ′, Q′〉, where

Q′ = (Q− {x}) ∪ {z | 〈z, c〉 ∈ E(x), ρ(z)− ρ(x) > c}

ρ′ = ρ ◦ [z 7→ ρ(x) + c | 〈z, c〉 ∈ E(x), ρ(z)− ρ(x) > c]

78

Difference Arithmetic Correctness

In relaxv , the only unsatisfied constraints w.r.t. ρ are those

corresponding to edges in E(x) for x ∈ Q.

If the addineq procedure returns an assignment ρ′, it is a

valid assignment since Q is empty.

If ρ0 is the input assignment to relaxv , then for each vertex

x ∈ Q, there is a path θ from y to x such that

W (θ) = ρ(x)− ρ0(y) < ρ0(x)− ρ0(y).

In particular, if y ∈ Q, then there is a cycle θ such that

W (θ) = ρ(x)− ρ0(y) < 0.

79

Linear Arithmetic

Linear arithmetic constraints have the form s ≤ t for linear

polynomials s and t over the reals.

These inequalities can be placed in a normal form

c0 +
∑n

i=1 ci ∗ xi ≤ 0, where each ci, for 0 ≤ i ≤ n is a rational

constant

Some of the approaches to solving linear arithmetic

constraints include

1. Fourier’s method

2. Shostak’s loop residue method

3. Simplex: Solve AX = B subject to X ≥ 0.

4. Simplex in General Form: Solve AX = B subject to

L ≤ X ≤ U .

80

General Form Simplex

Here the solution set has only unrestricted variables with

lower and upper bounds.

The state consists of

1. A tableau T of the form ~y = A~x for basic variables

y1, . . . , ym and non-basic variables x1, . . . , xn

2. An assignment β for the non-basic variables. The

assignment for a basic variable y is β[[T (y)]].

3. Two maps, L for the lower bound, and U for the upper

bound, from vars(T) to the rationals.

An input constraint of the form k1 ∗ x1 + . . .+ kn ∗ xn ≤ c is

converted to y ≤ c where y = k1 ∗ x1 + . . .+ kn ∗ xn.

81

General Form Simplex Solver

A new inequality is added as z ≤ c, where

z = k1 ∗ x1 + . . .+ kn ∗ xn is already introduced in the initial

construction of T .

Now, L′(z) = max(L(z), c).

Similarly, if the new inequality is z ≥ c, then

U ′(z) = min(U(z), c).

If L′(z) > U ′(z), we have an unsatisfiable state.

If β(z) < L′(z), then if z is non-basic, we set β′ = β[z := L′(z)].

If for some basic y, β′[[T (y)]] < L′(y), then T ′ = pivot(T)(xi, y),
where T (y) = b1x1 + . . .+ bnxn, bi > 0 and β(xi) < ui, or bi < 0
and β(xi) > li.

82

Simplex Example

T0 =
s1 = −x + y

s2 = x + y
β0 = (x 7→ 0, y 7→ 0, s1 7→ 0, s2 7→ 0)

T1 = T0 x ≤ −4 β1 = (x 7→ −4, y 7→ 0, s1 7→ 4, s2 7→ −4)

T2 = T1 −8 ≤ x ≤ −4 β2 = β1

T3 =
y = x + s1

s2 = 2x + s1

−8 ≤ x ≤ −4

s1 ≤ 1
β3 = (x 7→ −4, y 7→ −3, s1 7→ 1, s2 7→ −7)

83

Datatypes

The list datatype has the axioms

1. car(cons(x, y)) = x

2. cdr(cons(x, y)) = y

This implies, for instance that if cons(x, y) = cons(y, v), then

x = y and u = v.

To deduce this from the axioms, we need to introduce the

terms car(cons(x, y)) and cdr(cons(x, y)) that might both be

in the term universe U .

84

Term Extension

One option is to treat car , cdr , and cons as uninterpreted

but introduce instances of the axioms that extend the term

universe U .

This can be done lazily based on the contents of the

E-graph.

For example, whenever cons(x, y) occurs in U , add the

clauses car(cons(x, y)) = x, and cdr(cons(x, y)) = y.

Yices uses term extension for arrays as well:

1. If store(f, i, v) ∈ U add sel(store(f, i, v), i) = v.

2. For any g such that g ∼ store(f, i, v) or g ∼ f , and

sel(g, j) ∈ U , add i = j ∨ sel(store(f, i, v), j) = f(j).

85

E-Graph Closure

Another option is to derive enough closure rules to saturate

the E-graph so that no term extension is needed.

Closure rules are derived from the axioms by finding a

context C[] such that for ~u ∼ ~v and axiom instances C[~u] = u′

such that

1. If C[~v] ∈ U and u′ ∈ U , merge C[~v] and u′.

2. If C[~v] = v′ is an axiom instance, u′, v′ ∈ U , then merge

u′ and v′.

For datatypes, we get the closure rules:

1. If cons(s, t) ∼ cons(u, v), merge s and u, and t and v.

2. If car(u) ∈ U , u ∼ cons(s, t), merge car(u) and s.

3. If cdr(u) ∈ U and u ∼ cons(s, t), then merge cdr(u) and t.

86

Arrays

For arrays without extensionality, the closure rules are

1. If f ∼ store(g, i, v) and j ∼ i then merge sel(f, j) and v.

2. If f ∼ store(g, i, v), j ∼ j′, i ∼ i′, i′ 6= j′, then merge

sel(f, j) and v.

3. If f ∼ g, i 6= j, then merge sel(store(f, i, v), j) and sel(g, j).

With extensionality, we need to introduce a new constant

so that from f 6= g, we add f(k) 6= g(k) for a new constant k.

87

Combining Theory Solvers

88

Theory Combination

Practical satisfiability problems involve multiple theories:

arithmetic, arrays, datatypes, bit-vectors, and uninterpreted

function symbols.

Nelson and Oppen give an elegant method for combining
theory solvers:

1. The overall state of the combined solvers consists of a core

E-graph S0 and the individual theory states: S1; . . . ; Sm.

2. To add a mixed literal l, purify it into individual literals of the form

l′, x1 = t1, . . . , xn = tn, where the literal l′ is in the core and each ti
is a pure term in a theory.

3. Add each literal to the appropriate theory to obtain S′i.

4. If there is an arrangement A of shared variables into equivalence

classes such that A ∪ S′0 ∪ S′i is satisfiable for each theory i, then

the literal l is satisfiable with respect to S.

89

Purification

A quantifier-free Σ-constraint ∆ can be purified so that

each literal in the formula is a Σi-literal for i = 1, 2.

Let ∆[t := s] be the result of replacing each occurrence of t

in ψ by s.

A pure Σi-term, for i = 1, 2, is a Σi-term that is not a

variable.

purify(ψ,R) := purify(ψ[t := x], R ∪ {x = t}),

for fresh x,

pure Σi-term t in ψ, i = 1, 2

purify(ψ,R) := {ψ} ∪R, otherwise.

90

Guessing an Arrangement

A partition Π on a set of variables γ is a disjoint collection

subsets γ1, . . . , γn such that
⋃n

i=1 γi = γ.

An arrangement AΠ is a union of the set of equalities

{x = y | for some i : x, y ∈ γi} and the set of disequalities

{x 6= y | for some i, j : i 6= j, x ∈ γi, y ∈ γj}.

91

Combined Theory Solver

The state now consists of the core state S0 and the theory

states S1 and S2.

The corresponding signatures are Σ0 = ∅, Σ1, and Σ2.

The addlit(l, S) operation can be implemented by

addlit(l, S) = addpurelits(R,S)

where R = purify(l, ∅)

addpurelits({l} ∪+ R,S) = addpurelits(R,S′),

where S′ = S′0, S
′
1, S

′
2,

S′i =

 addlit i(l, S0), for l ∈ Σi

Si, otherwise

92

Combined Theory Solver

The combined check operation can also be described by

guessing an arrangement and checking in the individual

theories.

check(S0;S1;S2) =
∨
Π

check1(S′0, S
′
1) ∧ check2(S′0, S

′
2)

where S′0, S
′
1, S

′
0 = addpurelits(AΠ, S0;S1;S2)

93

Correctness

The Nelson–Oppen combination works as long as the

component theories are stably infinite: If a constraint ∆ has

a Ti-model, then it has a countable such model.

The union of two consistent stably infinite theories is

consistent and stably infinite.

Progress: Each step: purification, guessing, and individual

theory solving, converges.

Conservation: A (T1 + T2)-model is a model that is both a

T1-model and a T2-model. Purification and guessing easily

preserve (T1 + T2)-models. Each such model must satisfy

one of the arrangements.

If theory solving indicates unsatisfiability, the premise state

is also unsatisfiable.

94

Correctness: Canonicity

If the theory solving stage indicates satisfiability, then by

the canonicity of the theory solver, we have countable

models Mi of S0;Si for i = 1, 2.

A combined model M can be constructed. Assume that

M1(x) = M2(x) for x ∈ S0.

There is a bijection h with h(M1(x)) = M1(x) for x ∈ S0 such

that

M(f)(a1, . . . , an) = h−1(M2(f)(h(a1), . . . , h(an)), for f ∈ Σ2

M(p)(a1, . . . , an) = M2(p)(h(a1), . . . , h(an)), for p ∈ Σ2

95

Justification by Interpolation

For satisfiability in countable models, the empty theory

admits quantifier elimination.

By interpolation, if S0;S1;S2 is unsatisfiable, there is an

interpolant I in Σ1[X1] ∩ Σ2[X2] such that T1 |= S1 ⇒ I and

T2 |= S1 ⇒ ¬I.

Since Σ1 ∩ Σ2 = ∅, the interpolant I is a first-order formula

in the empty signature.

Stable-infiniteness is not a problem in practice: theories

with finite cardinalities, like fixed-width bit-vectors, can be

guarded with predicates, e.g,, bitvector?(x).

96

Quantifier Elimination

A subformula of the form ∃x : x = y ∧ l1 ∧ . . . ∧ ln can be

replaced by l1[y/x] ∧ . . . ∧ ln[y/x].

For a subformula of the form ∃x : l1 ∧ . . . ∧ ln where no li is

of the form x = y, the literals containing x can be dropped

along with the quantifier, for the case of countable models.

The last step needs stable-infiniteness: for a finite model M

where |M | = {a, b}, with M(y) = a and M(z) = b, and a

formula A of the form(∃x : x 6= y ∧ x 6= z ∧ y 6= z), we have

M 6|= A, but M |= y 6= z.

97

Interpolation

If there is a quantifier-free formula I such that T1 |= S1 ⇒ I

and T2 |= S2 ⇒ ¬I.

Let A1 ∨ . . . ∨An be the disjunction of all possible

arrangements.

Clearly, I is equivalent to the disjunction of some subset O

of the arrangements
∨

i∈O Ai and ¬I is equivalent to
∨

i 6∈O Ai.

If each Ai is unsatisfiable with either S1 or S2, then there is

an interpolant: I =
∨
{Ai | T1 |= S1, Ai}.

If some Ai is satisfiable with both S1 and S2, then there is

no interpolant since each Ai is either part of I or ¬I.

98

Convex Theories

A theory is convex if whenever a set of atoms ∆ is such

that ∆ ⇒ x1 = y1 ∨ . . . xn = yn, then ∆ ⇒ xi = yi for some i,

1 ≤ i ≤ n.

A theory is compact if a set of formulas S is satisfiable iff

each finite subset of S is satisfiable.

If a formula in a compact theory has no infinite models, then it has

models of cardinality at most m for some natural number m.

Any compact, convex theory with nontrivial models is stably

infinite.

Otherwise, there is a constraint ∆ with a finite model M of cardinality

m so that the formula Bm given by
∨m+1

i=1

∨m+1

j=i+1
xi = xj is satisfied.

If we split ∆ into the atoms ∆+ and negated atoms ∆−, then

T |= ∆+ ⊃ ∆− ∨Bm so that vars(∆) ∩ vars(Bm) = ∅, but T 6|= l for any

l ∈ ∆− ∨ Cm.

99

Convex Theories: Examples

Equational theories and Horn theories are examples of

convex theories.

Any theory that is closed under direct products (i.e.,

whenever M1 and M2 are T -models, so is M1 ×M2) is

convex.

Non-convex, stably infinite theories include integers

(x− y = 1, x ≤ z, z ≤ y), and nonlinear arithmetic

(x2 = 1, y = 1, z = −1), and arrays.

For convex theories, there is no need to guess an

arrangement.

The arrangement consists of those equalities x = y on

shared variables x, y that are implied by each Si.

100

Combination of Easy Theories can be Hard

The free Σ-theory Φ(Σ) is decidable in O(n log(n)) by

congruence closure.

Difference arithmetic is decidable in O(mn) by the

Bellman-Ford algorithm.

The combination is NP -hard: x1 ∨ ¬x2 ∨ x3 can be

represented as f(x1, x2, x3) 6= f(0, 1, 0), for 0 ≤ x1, x2, x3 ≤ 1.

101

Satisfiability Modulo Theories Revisited

The guessing of the arrangement can be incorporated into

the basic DPLL search procedure.

We need to split on equalities that might not be part of the

input.

For example, the array theory requires splitting on i = j

whenever we have store(f, i, v) and sel(g, j).

102

E-Graph Matching

We have only looked at ground satisfiability with built-in

decidable theories.

First-order satisfiability is undecidable in general, though

there are some very useful decidable fragments, e.g., ∃∀ for

any theory where ground satisfiability is decidable.

Quantifiers are convenient for capturing certain rules that

are not captured by theories, e.g., ∀x, y : f(x, y) = f(y, x), or

(∀x : f(g(x)) = g(f(x)).

Such quantified formulas can be reduced to the ground case

by instantiation through matching.

However matching cannot be syntactic — the term universe

might contain terms f(s) and g(t) where s ∼ g(t), but no

syntactic instance of a pattern f(g(t))

103

E-Graph Matching

Given a quantified formula ∀x1, . . . , xn : A, a pattern is a

term that contains all the quantified variables.

Given a query tp
?= t, an abstract E-graph matcher returns a

set of matches S such that for each substitution β ∈ S,
E ∪ β |= tp = t, and if for some substitution β, E ∪ β |= tp = t,
then β ∈ S.

match(x, t,S) := {β ∪ {x 7→ t} | β ∈ S, x 6∈ dom(β)} ∪

{β | β ∈ S, F ∗(β(x)) = F ∗(t)}

match(c, t,S) := S if c ∈ class(t)

match(c, t,S) := ∅ if c 6∈ class(t)

match(f(p1, . . . , pn), t,S)

:=
⋃

f(t1,...,tn)∈class(t)

match

(
pn, tn, . . . ,

match(p1, t1,S)

)

104

Applications

105

Transition Systems

Given state Σ, initial state predicate I(s), next-state

relation N(s, s′), and assertion P (s).

Bounded Model Checking:

satisfiable(I(s0) ∧
∧k−1

i=0 N(si, si+1) ∧
∨k

i=0 ¬P (si))

k-Induction:

satisfiable(
∧k

i=0N(si, si+1) ∧
∧k

i=0 P (si) ∧ ¬P (sk+1))

Image computation: Compute the formula representing

AXNP , or ∀s′ : N(s0, s′) ∧ P (s′)

Fixpoints: Compute the formula representing AGNP .

Interpolant: Find interpolant formula F such that

I(s0) ∧N(s0, s1) ⇒ F (s1) and

¬(F (s1) ∧
∧k−1

i=1 N(si, si+1) ∧
∨k

i=0 P (si)).

106

Scheduling

Given j jobs and m machines, each job consists of a

sequence of tasks ti1, . . . , tin, where each task tik is a pair

〈M, δ〉 for machine M and duration δ.

Find a schedule with a minimum duration, e.g.,

Jobs Tasks

a 〈1, 2〉, 〈2, 6〉

b 〈2, 5〉, 〈1, 3〉, 〈2, 3〉

c 〈2, 4〉

d 〈1, 5〉, 〈2, 2〉

107

Planning

Given c cities, t trucks each located at a specific city, and p

packages each with a source city and a destination city.

In each step, packages can be loaded and unloaded, or the

trucks can be driven from one city to another.

Find a plan with a minimum number of steps for delivering

the packages from source to destination.

For each step i, we have Booleans: location(t, c, i), at(p, c, i),
and on(p, t, i).

Domain constraints assert that a package can be either on

one truck or at a city, a package can be loaded or unloaded

from a truck to a city only if the truck is at the city, etc.

108

Soft Constraints

Given a circuit with a battery B in series with two lamps L1

and L2 in parallel. If the battery is normal, then each lamp

will light up if it is normal. Lamp L1 and L2 do not light up.

Minimize abnormality.

The constraints can be expressed as

¬ab(L1),

¬ab(L2),

¬ab(B),

ab(B) ∨ ab(L1) ∨ on(L1),

¬ab(B),

ab(B) ∨ ab(L2) ∨ on(L2),

¬on(L1),

¬on(L2)

109

AllSAT

The set of all satisfying assignments is useful for some

applications.

Add a field B to collect the blocking clauses corresponding

to the assignments.

For input ¬a ∨ b, c, the first assignment yields M = c; a, b.
Add the negation ¬c ∨ ¬a ∨ ¬b as a blocking clause to B and

continue. (This could be reduced to ¬c ∨ ¬b.)

The next assignment M ′ = c; a,¬b generates a confict, so we

add the conflict clause ¬c ∨ ¬a to C.

Next, c,¬a; b is a satisfying assignment, so ¬c ∨ a ∨ ¬b is

added to B. Finally, c,¬a,¬b is also satisfying, and hence

¬c ∨ a ∨ b is added to B.

There is a conflict at level 0, and ¬
∧
B is the required DNF.

110

MaxSAT

With soft constraints, all constraints may not be satisfiable,

but the goal is to satisfy as many constraints as possible.

Each constraint Ai can be augmented as ai ∨Ai, for a fresh

variable ai.

We can add constraints indicating that at most k of the ai

literals can be assigned >.

By shrinking k, we can determine the minimal value of k.

Weighted MaxSAT can be solved similarly.

More generally, pseudo-Boolean constraints Σiwi ∗ ai ≤ k can

be encoded.

111

SMT Applications

• Test generation: Find assignments to the individual

variables satisfying a path constraint in a program.

• Infinite-state bounded model checking: BMC for

programs with assignments, unbounded arithmetic,

arrays, datatypes, and timers.

• Predicate abstraction and abstract reachability:

For an atom substitution γ and formula φ, find Boolean

formula φ̂ such that φ⇒ γ(φ̂).

• Scheduling, planning, constraint solving, and MaxSAT

in unbounded domains.

112

Yices

Yices is a high-performance SMT solver that supports

1. An expressive language with higher-order types,

dependent types, and predicate subtypes.

2. A combination of theories including uninterpreted

functions, linear arithmetic, records, tuples, datatypes,

arrays, and bit-vectors.

3. A command language with incremental definitions,

assertions, context creation and examination,

pushing/popping contexts, and MaxSAT.

Yices is integrated with SAL and PVS, and is used in

hardware/software verification, bounded model checking,

planning, probabilistic consistency using MaxSAT, concolic

execution.

113

Yices Examples: Peterson

(define c1::(-> int bool))

(define r1::(-> int bool))

(define t::(-> int bool))

(define c2::(-> int bool))

(define r2::(-> int bool))

(define I::bool (and (not (c1 0)) (not (c2 0))(not (r1 0))

(not (r2 0))(not (t 0))))

(define N1::(-> int bool) ...)

(define N2::(-> int bool) ...)

(define N::(-> int bool) ...)

114

Yices Example: Property

(define safe::(-> int bool) (lambda (i::int)(not (and (c1 i)(c2 i)))))

(define iter_N::(-> int int bool) (lambda (i::int j::int)

(if (<= i 0) (N j) (and (N (+ i j)) (iter_N (- i 1) j)))))

(define safeto::(-> int int bool)(lambda (i::int j::int)

(if (<= i 0) (safe j)(and (safe (+ i j))(safeto (- i 1) j)))))

(define PBMC::(-> int bool) (lambda (i::int)

(and I (iter_N i 0) (not (safeto (+ i 1) 0)))))

(define PIND::(-> int bool)(lambda (i::int)(exists (j::int)

(and (iter_N i j) (safeto i j)(not (safeto (+ i 1) j))))))

(assert (or (PBMC 3) (PIND 3)))

(check)

115

Yices Example: Lightbulb

(define-type bulb (scalar lb1 lb2))

(define abl::(-> bulb bool))

(define abb::bool)

(define on::(-> bulb bool))

(assert+ (not abb) 1)

(assert+ (not (abl lb1)) 1)

(assert+ (not (abl lb2)) 1)

(assert (or abb (abl lb1) (on lb1)))

(assert (or abb (abl lb2) (on lb2)))

(assert (not (on lb2)))

(assert (not (on lb1)))

(max-sat)

116

Lightbulb output

sat

unsatisfied assertion ids: 1

(= abb true)

(= (on lb1) false)

(= (on lb2) false)

(= (abl lb1) false)

(= (abl lb2) false)

(= (on lb1) false)

(= (on lb2) false)

cost: 1

117

Yices Example: Arrays

(not

(forall (?i Int) (?pp Queue)(?aa Array)(?perm Array)(?ee Array)

(?newperm Array)

(implies (and (= ?ee (store (store (elems ?pp)

(- ?i 1)

(select (elems ?pp) ?i))

?i (select (elems ?pp) (- ?i 1))))

(= ?newperm (store (store ?perm

(- ?i 1)

(select ?perm ?i))

?i (select ?perm (- ?i 1))))

(forall (?i Int) (= (select ?aa (select ?perm ?i))

(select (elems ?pp) ?i))))

(forall (?i Int) (= (select ?aa (select ?newperm ?i))

(select ?ee ?i))))))

118

Conclusions

Powerful, mature, and versatile tools like SMT solvers can

now be exploited in very useful ways.

Applications include verification, test generation, model

checking, theorem proving, abstraction, scheduling,

planning, and soft constraint solving.

These tools can be used either as blackboxes, libraries,

scripts, or interactively.

The construction and application of satisfiability procedures

is an active research area with exciting challenges (nonlinear

arithmetic, quantifier reasoning, scalability, interfaces,

integration).

119

